

66 The effects of climate change have been right in front of our eyes for a long time, which is why the issues of protecting our Planet are increasingly being discussed.

Any choice or action taken every day by each one of us has an impact on the environment, an ecological footprint that leaves a deep mark on future generations as well.

MAG AUTOBLOK TECNOMAGNETE has always been sensitive to this important aspect of our lives by actively contributing to the technological transition of magnetic systems used in industrial production processes from lifting ferrous loads to clamping workpieces on machine tools.

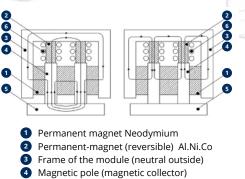
The use of innovative **permanent-electro magnetic** systems instead of traditional, 'energy-intensive' electromagnetic systems contributes to the reduction of electricity consumption of user companies.

Comparison of the energy consumption of the two technologies considering 100 movements per day (same capacity)

	Electromagnet	Permanent-Electro	
Liftings a day	100	100	
Average electrical consumption time per handling cycle	3 minutes	10 seconds (MAG and DEMAG cycles)	
Average consumption time per day	5 hours	0.28 hours	
Electrical consumption of product (kW/h)	12 kW/h	24 kW/h	
Energy consumed per day	60 kW / day	6,7 kW / day	
Energy consumed per year	18.000 kW	2.010 kW	
Electricity cost	0,4 €/kWh	0,4 €/kWh	
Working days per year	300 days	300 days	
Cost of energy consumed in 1 year	7.200 €/year	804 €/year	
Cost of energy consumed in 3 years	21.600 €	2.412 €	
Equivalent CO2 emission in one year (*)	9.540 Kg	1.065 Kg	

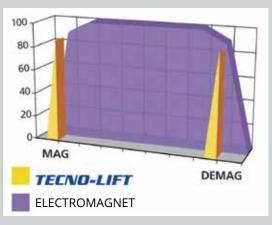
(*) conversion factor 0,53 Kg of CO2 for each KWh consumed

Hence, a lower energy burden and a lower environmental impact if one considers that electro-permanent magnetic technology does not require the aid of expensive safety batteries (in the event of a power failure), which entails high environmental costs for both their production and disposal.



Permanent-electro magnetic technology is extremely safe as it does not depend on electricity for the generation and keeping of the magnetic force, which is solely produced by the action of the permanent magnets installed inside the lifting modules. Electricity is only used for a few seconds to channel the magnetic flux from the inside of the magnetic modules (DEMAG state) to the outside (MAG state) by passing through the section of steel load to be lifted.

The two states MAG and DEMAG maintain their condition for an unlimited time even in the absence of electricity.



- Steel load to lift
- 6 Reversing coil of Al.Ni.Co magnet

The obvious advantages of permanent-electro magnetic technology are:

- > Total safety
- ➤ Energy saving
- Elimination of battery backup units
- Reduced weight on the overhead crane and ease of installation
- Reliability over time thanks to limited circulation of electrical current within the modules
- Constant performance during the working day thanks to the elimination of the Joule effect

TECNOLIFT: limited dependence on electric current for the generation and keeping of magnetic force

TECNOLIFT: consistent performance over time

Permanent-electro magnetic lifters most commonly used for handling steel sheets and blocks

	Model	WLL*	Max size load	Optional	
	SMH 50	5 tons	3500 x 6000 mm		
	SMH 100	10 tons	3500 x 6000 mm	County of the	
	SMH 150	15 tons	3500 x 6000 mm		
	SMH 200	20 tons	3500 x 6000 mm		
	SMH 300	30 tons	3500 x 6000 mm		
	SMH 400	40 tons	3500 x 6000 mm		
	SMH 500	50 tons	3500 x 6000 mm	MFR Magnetic force reading	
	*Minimum thickness 30 mm			system	
	BF 2/50X	5 tons	3500 x 6000 mm	3	
	BF 2/65	6,5 tons	3500 x 6000 mm		
	BF 2/80X	8 tons	3500 x 6000 mm		
	BF 2/100X	10 tons	3500 x 6000 mm	SRM Manual system for 90°	
	*Minimum thickness 5 mm			rotation of cross-beams	
	TM 4/100X	10 tons	3500 x 12000 mm	2	
	TM 4/130X	13 tons	3500 x 12000 mm		
	TM 4/160X	16 tons	3500 x 12000 mm	5	
	TM 4/200X	20 tons	3500 x 12000 mm		
	TM 4/250X	25 tons	3500 x 12000 mm	SRM Manual system for 90°	
	*Minimum thickness 5 mm			rotation of cross-beams	
	TM 6/160X	16 tons	3500 x 16000 mm	2.	
	TM 6/200X	20 tons	3500 x 16000 mm		
	TM 6/250X	25 tons	3500 x 16000 mm		
	TM 6/300X	30 tons	3500 x 16000 mm	SRM Manual system for 90°	
	*Minimum thickness 5 mm			rotation of cross-beams	
	TB 4/35	3,5 tons	3500 x 6000 mm	KARE AVE	
	TB 6/35	3,5 tons	3500 x 12000 mm	-14	
	TB 2/60	6 tons	3500 x 6000 mm		
	TB 4/90	9 tons	3500 x 12000 mm		
	TB 4/120	12 tons	3500 x 12000 mm	Contraction of the second	
	TB 6/180	18 tons	3500 x 18000 mm	TB	
	*Minimum thickness 5 mm			_ Tilting system 0 – 87°	

Easy to install and simple to use (Plug & Play)

- > The control unit on board is operated by radio-control as part of the supply to simplify the installation
- > It only requires the connection to the power supply by a simple plug/socket (400 V. 50/60 Hz)
- > The radio control gives all operational and safety functions in a simple and intuitive way

Permanent-electro telescopic beam TM6/200 series

Permanent-electro COMBI series for loading/unloading cutting machines in a single operation (plasma, laser ...)

Permanent-electro module SMH 300 series

Permanent-electro MULTI series for lifting multiple and single sheets of different thicknesses

Overview on other permanent-electro magnetic solutions for lifting applications

TP Series

CV Series

RD Series

CH Series

MAG-AUTOBLOK TECNOMAGNETE SpA Headquarter

Via Nerviano 31 - 20045 Lainate (MI) - ITALY Tel: +39 02 937591 info@tecnomagnete.com www.mag-tecnomagnete.com

TECNOMAGNETE GmbH

Germany - Austria

Ohmstrasse 4 - 63225 Langen - GERMANY Tel.: +49 6103 750730 - Fax: +49 6103 7507311 Email kontakt@tecnomagnete.com

TECNOMAGNETE Inc.

U.S.A. - Canada - Mexico

6655 Allar Drive - Sterling Hts, MI 48312 - USA Tel.: +1 586 276 6001 - Fax: +1 586 276 6003 Email infousa@tecnomagnete.com

TECNOMAGNETE SARL

France

Batiment C - 01200 VALSERHONE - FRANCE Tel.: +33 (0)4 50 56 06 00 - Fax: +33 (0)4 50 56 06 10 Email contact@tecnomagnete.com MV Design